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Abstract

This paper develops mathematical formulations for large strain analysis of extensible flexible marine pipes
transporting fluid in two different coordinates: Cartesian and natural coordinates. Both the virtual work method and
the vectorial method are applied to generate the large strain formulations, in which deformation descriptions based
upon the total Lagrangian, the updated Lagrangian, and the Eulerian mechanics are taken into consideration. The new
ideas used in the model formulations deal with applications of the extensible elastica theory and the apparent tension
concept to handle combined action of the effect of axial deformation with large strain and behaviour of flow of
transported fluid inside the pipe including the effect of Poisson’s ratio. The present models cover nonlinear statics and
nonlinear dynamics, and provide flexibility in the choice of the independent variables used to define the elastic curves.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In the past five decades, flexible pipes have been employed extensively in numerous offshore engineering applications.
The most vital function of them is to transport fluids drilled from underneath ocean floor such as oil, gas, hydrocarbon,
and other crude resources, up to the production platform or drilling ship. In the deep-ocean mining industry, flexible
pipes play the role of the main module of the production system as shown in Fig. 1(a). In moderate sea-depth
applications, they are often used as the secondary part, linked to rigid risers as shown in Fig. 1b and c.

In the literature, there are many papers related to flexible pipe analysis as reviewed by Chakrabarti and Frampton
(1982), Ertas and Kozik (1987), Jain (1994) and Patel and Seyed (1995). It is remarkable that most of them omit the
effect of axial deformation of the pipe, and the influence of internal flow. Furthermore, all of them overlook the
Poisson’s ratio effect. As will be reviewed and discussed later, the individual effect of axial deformation, internal flow,
and Poisson’s ratio can be significant for behaviour of low flexibility pipes. It is therefore conceivable that combined
actions of all the effects become more important for behaviour of highly flexible pipes. In such cases, those effects
should be carefully examined, and large strain analysis is essential.

However, hitherto a mathematical treatment for the large strain analysis that takes into consideration the combined
actions of those effects has not been elucidated. Hence it is the objective of this paper: first to introduce and explain the
mathematical principles for large strain analysis of extensible flexible marine pipes conveying fluid from viewpoints of
the total Lagrangian, the updated Lagrangian, and the Eulerian mechanics; second to show how to formulate large
strain models of marine pipes in Cartesian and natural coordinates by relying upon the extensible elastica theory and
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Nomenclature

A,, Aey, A, sectional areas of the external fluid column at the three states

A;, Ay, A; sectional areas of the internal fluid column at the three states

/_IP,APO,A[) sectional areas of a pipe at the three states

ap,app acceleration vectors of transported fluid relative to a fixed frame and a pipe

arw, A, Arx, dpy accelerations of transported fluid relative to a fixed frame in normal, tangential, horizontal, and
vertical directions, respectively

ap acceleration vector of a pipe relative to a fixed frame

apy,dpi, apx, dp, accelerations of a pipe relative to a fixed frame in normal, tangential, horizontal, and vertical
directions, respectively

B, B,, B bending rigidities at the three states

Cpn, Cpy, Cy, Cypy  coefficients of normal drag, tangential drag, added mass, and inertia

D., Dy, D, diameters of the external fluid column at the three states

Dp,Dp,,Dp diameters of a pipe at the three states

E elastic modulus

ff,,f external load vectors at the three states

fx,f5,,fy hydrodynamic force vectors at the three states

Fy, Fry, Fre, Fry hydrodynamic forces in normal, tangential, horizontal, and vertical directions, respectively

Jtns St frxsfuy hydrodynamic forces per unit length in normal, tangential, horizontal, and vertical directions,
respectively

Fip, Frin F, normal inertial forces of a pipe, transported fluid, and overall system

Fip Fri, Fi; tangential inertial forces of a pipe, transported fluid, and overall system

fon normal reaction between pipe wall and transported fluid per unit length

Ju .S, fy external load components in Egs. (123c) and (129g)

g gravitational acceleration

H,H,, H horizontal internal forces at the three states

i,j horizontal and vertical unit vectors in Cartesian system

Ip, Ip,, Ipmoments of inertia of a pipe at the three states

M, M,, M bending moments at the three states

N, N,, N axial forces at the three states

e, Mey, M, masses of the external fluid column per unit length at the three states

m;, mj,,m; masses of the internal fluid column per unit length at the three states

mp,mp,, mp masses of a pipe per unit length at the three states

i, n,,i normal unit vectors in natural system at the three states

PesDi pressures of external and internal fluids

0, 0,, O shear forces at the three states

F,ro, i radii of curvatures at the three states

rp,Ypp  position vectors of transported fluid relative to a fixed frame and a pipe

rp position vector of a pipe relative to a fixed frame

5,8,,5  arc-length coordinates at the three states

T,T, T true wall tensions at the three states

Ta, Tuo, T, apparent tensions at the three states

T.,T..,T. effective tensions at the three states

Thi apparent tension due to triaxial stress

t time (time derivative denoted by overdot such as 0x/0r = x)
6.t tangential unit vectors in natural system at the three states
u,,u displacement vectors from state 1 to 2 and state 2 to 3

Uy, U horizontal displacements from state 1 to 2 and state 2 to 3

Uno, U,  normal displacements from state 1 to 2 and state 2 to 3

V,V,, V vertical internal forces at the three states

Ve, Ve current velocities at mean sea level and at any sea depth

Vr,Vpp velocity vectors of transported fluid relative to a fixed frame and a pipe
Vi, Vi external hydrodynamic velocities in normal and tangential directions
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Vhx, Viy external hydrodynamic velocities in horizontal and vertical directions
Vi, Vi, Vi internal flow velocities at the three states

Vp velocity vector of a pipe relative to a fixed frame

Vex, Vpy, Vpp horizontal, vertical, and rotational velocities of a pipe
Vi wave velocity

Uy, U vertical displacements from state 1 to 2 and state 2 to 3

Uno, Uy, tangential displacements from state 1 to 2 and state 2 to 3
Wp, W,, W; weights of a pipe, the external fluid column, and the internal fluid column
Wa, Wao, W, apparent weights per unit length at the three states

X,, X Cartesian vectors of displacements from state 1 to 2 and state 2 to 3
X,X,,x horizontal Cartesian coordinates at the three states
X static offset

7,¥0,y  vertical Cartesian coordinates at the three states
Pby Py vertical distances from bottom support to seabed and to sea surface

Greek symbols

o independent variable (its derivative 9/0o denoted by (')
Y4-7¢  Almansi’s and Green’s strains

7,7,,74 total, static, and dynamic updated Green strains

Vs Vs relative velocities of external fluid in normal and tangential directions
g,8,¢  axial strains at the three states

&, &, &4 total, static, and dynamic axial strains (e; = ¢ — &)

Euri axial strain due to the tension 7,;

&y, €00, & VOlumetric strains of a pipe at the three states

axial strain at a fibre radius coordinate ¢

a fibre radius coordinate

,0,,0 rotational angles at the three states

™

S

TR R

K,Ko, K curvatures at the three states

v Poisson’s ratio

Tlans Tars Tax, Tay total virtual works of apparent system in normal, tangential, horizontal, and vertical directions,
respectively

Pp» Per p; densities of a pipe, external fluid, and internal fluid

op end effect stress

gy, 00,0, triaxial stress in Fig. 4(f)

T shear stress in pipe wall

Ty wall shear friction between pipe wall and transported fluid

Vs, Yeu, Ve control volumes of a pipe at the three states

Y., Veo, Vo volumes of the external fluid column at the three states
¥, Vi, V; volumes of the internal fluid column at the three states
¥p,Vp,, Vp volumes of a pipe at the three states

Subscripts

pipe

external fluid
internal fluid

static quantity
dynamic quantity
natural coordinates.

I 0 -8 Ny
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Fig. 1. Flexible marine pipes: (a) marine riser; (b) flexible pipe; and (c) hoseline.

SEZA

the apparent tension concept; and finally to illustrate versatile and sophisticated models suitable for two-dimensional
large strain analysis of extensible flexible marine pipes conveying fluid.

1.1. Significance of effect of axial deformation

From a literature review, the effect of axial deformation on behaviour of marine cables was investigated by Huang
(1992), Chucheepsakul et al. (1995) and Chucheepsakul and Huang (1997). The effect on behaviour of suspended cables
was studied by Huddleston (1981), Shih and Tadjbakhsh (1984), Burgess and Triantafyllou (1988), Lin and Perkins
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(1995), Triantafyllou and Yue (1994) and Tjavaras et al. (1996, 1998). The effect was included in analysis of low
flexibility marine risers by Chung and Whitney (1983), Chung et al. (1994), Chung and Cheng (1996) and Bernitsas and
Kokarakis (1988); Bernitsas et al. (1985).

It was reported that the effect of axial deformation on static behaviour of those structures is to increase static
displacements of low-tensioned cables, due to extensibility dominating; but to reduce the static displacement of high-
tensioned cables, due to pre-stressing dominating (Chucheepsakul et al., 1995; Chucheepsakul and Huang, 1997).
Although Bernitsas and Kokarakis (1988); Bernitsas et al. (1985) found that the effect on static behaviour of low
flexibility pipes was rather small, they did not provide evidence of the same result with the highly flexible pipes.

In relation to the dynamic behaviour of these structures, the effect of axial deformation is to increase dynamic stresses
(Chung and Whitney, 1983; Chung et al. (1994); Chung and Cheng, 1996), to reduce natural frequencies
(Chucheepsakul and Huang, 1997), and to provoke elastic mode transition of cable vibrations (Burgess and
Triantafyllou, 1988; Lin and Perkins, 1995). If the stress—strain relation is hysteretic, the effect can amplify damping of
dynamic strain in the axial direction (Triantafyllou and Yue, 1994). Several papers by Chung and Whitney (1983),
Chung et al. (1994), Chung and Cheng (1996) comment that the effect of axial deformation is crucial to dynamics of low
flexibility pipes and should be considered in the design of the pipe.

The interesting point in all the previous research is that the effect of axial deformation has been investigated by using
small-strain analysis that adopts quadratic expressions for strain definitions. This approach, however, is proper if, and
only if, the axial strain is small compared to unity (Fung, 1994). For highly flexible pipes, such an assumption is no
longer necessarily valid; thus, this paper proposes large strain modelling by employing the square-root expressions for
large strain definitions, as will be shown later.

1.2. Significance of influence of internal flow

Although transporting fluid is the main function, marine riser pipe analysis from the middle of the 1950s to the end of
the 1970s paid little attention to the influence of transported fluid. In the same period, research concerning mechanics of
pipes conveying fluid grew rapidly. Research work related to vibrations of straight and curved pipes can be found in the
papers by Housner (1952), Gregory and Paidoussis (1966), Paidoussis (1970) and Doll and Mote (1976). It was reported
that the internal flow reduced stability of the pipe and acted on the pipe like an end follower force (Thompson and
Lunn, 1981). As a result, it could engender divergence instability or buckling of simply supported pipes (Holmes, 1978),
and could induce flutter instability or snaking behaviour of cantilever pipes (Gregory and Paidoussis, 1966).

The lack of connection between research work on marine pipes and pipes conveying fluid has led to a misconception
amongst some authors. When the effect of internal flow on marine pipes was handled in the early 1980s, it was
considered that internal flow induced only friction forces to act on the pipe wall. However, researchers concerned with
pipes conveying fluid, such as Gregory and Paidoussis (1966), Paidoussis (1970), and Thompson and Lunn (1981), had
been well aware that the internal friction forces did not act directly on the pipe, but they affected the internal pressure
transmitted to the pipe wall, which yielded tensioning and pressure drop (Paidoussis, 1998). In addition, internal flow
generates not only the pressure effects, but also the other fictitious forces such as Coriolis and centrifugal forces.

By the end of the 1980s, the effect of internal flow on behaviour of marine pipes began to draw specific interest from a
number of researchers, and the misconception was remedied. It was reported that internal flow reduced structural
stiffness, provided negative damping (Irani et al., 1987), and induced additional large displacements of the pipes
(Chucheepsakul and Huang, 1994); reduction of natural frequencies of the pipes is slight at a low speed of internal flow,
but significant at a high speed of internal flow (Moe and Chucheepsakul, 1988; Wu and Lou, 1991); internal slug flow
can induce significant cyclic fatigue loading in deep water (Patel and Seyed, 1989); and simply supported marine riser
pipes transporting fluid lost stability by divergence (Chucheepsakul et al., 1999).

However, mathematical models used in most of those works do not consider the effects of geometric nonlinearity,
extensibility, and the Poisson’s ratio effect on the pipes, despite the fact that flexible marine pipes are inclined, initially
curved, significantly deflected and deformed. This shortcoming motivates the aim of this work to exhibit how to take
into account these effects in large strain formulations of flexible marine pipes conveying fluid. Revealing the interaction
between the transported fluid and the pipe subjected to these effects provides new understanding of the behaviour of
such systems.

1.3. Significance of Poisson’s ratio effect and fluid pressures
It will be shown later that the Poisson’s ratio effect and lateral actions of fluid pressures disturb the behaviour of

flexible marine pipes in three ways: first, altering structural stiffness; second, modifying internal flow characteristics; and
third, varying the apparent tension in the pipe.
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A review of the literature shows that while the first two effects have not been examined in marine pipe analysis, the
first effect has been included in marine cable analysis by Goodman and Breslin (1976). Even if the third effect on the
flexible marine pipes has been treated through the effective tension concept proposed by Sparks (1984), the Poisson’s
ratio effect is not fully taken into account.

As will be shown later, using the effective tension concept creates an error in evaluating the apparent tension arising in
the cross-section of the pipe, whenever the Poisson’s ratio is not equal to 0.5. The greater the difference of Poisson’s ratio
from 0.5, the higher the error grows, especially under a condition of severe fluid pressures. In order to avoid such an error,
this paper establishes the apparent tension concept instead of the effective tension concept. The detailed treatments of the
first two effects on mathematical models for large strain analysis of flexible marine pipes are also included.

1.4. Assumptions

The following assumptions are stipulated in the present mathematical modelling:

(a) The pipe materials are linearly elastic. Therefore, the Kelvin—Voigt internal dissipation or the dissipative recovery
is not relevant.

(b) At the undeformed state, the pipes are initially straight, and have no residual stresses.

(c) The pipes are sufficiently thick-walled to suppose that, ideally, their cross-sections remain circular after change of
cross-sectional size due to the Poisson’s ratio effect, so that the elastic rod theories are usable, and Brazier’s effect
or flattening of bent tubes is negligible.

(d) Longitudinal strain is large, but shear strain is insignificant for elastic rods with high slenderness ratio.

(e) Plane sections of the pipes remain plane at all states.

(f) The internal and external fluids are inviscid, incompressible, and irrotational. Their densities are uniform along arc
lengths of the pipes.

(g) The internal flow is the one-dimensional plug laminar flow.

(h) The general form of Morison’s equation is adopted for evaluating external hydrodynamic forces of external fluid.
The distributed couple induced by a flow asymmetry due to vortex shedding is neglected.

(i) The effect of rotary inertia is negligible.

2. Fundamentals of large strain modelling of flexible marine pipes conveying fluid

Large displacement behaviour of an extensible flexible marine pipe is depicted in Fig. 2. Firstly, the pipe is at rest and
unstretched at state 1: the undeformed state. Subsequently, as the pipe is subjected to time-independent loads due to
gravitation, steady current flow, and steady internal flow, the pipe experiences large displacement and forms the initial
condition of the pipe at state 2: the equilibrium state. Finally, under dynamic actions of disturbances such as waves,
unsteady current, and unsteady internal flow, the pipe sustains vibration about the equilibrium configuration at state 3:
the displaced state.

Corresponding to the three states, mathematical treatments of the following subjects are considered to be requisite for
large strain analysis of extensible marine pipes transporting fluid: (1) physical descriptions, (2) large strain
measurements, (3) the extensible elastica theory, (4) the apparent tension concept, and (5) dynamic interactions
between fluids and pipes. Details of these subjects are given as follows.

2.1. Physical descriptions

In order to define positions, motions, and deformations of an extensible flexible pipe and transported fluid, the
descriptions for geometry, kinematics, and deformation are necessary for large strain modelling.

(a) Geometric description. Fig. 2 uses the Cartesian coordinates @, j) and the intrinsic coordinates of arc length and
rotation (8, é) as the global geometric descriptors, and employs the natural coordinates (fi, f) as the local geometric
descriptor. From the two global systems, there exist a number of choices of the independent variable. For
versatility of mathematical models, the symbol o€ {)‘c, X0, X, 7, Vor V5 5, 80,5, 0, 0,, 0} is introduced to represent any
independent variable, and the superscript (') denotes d()/0o.

(b) Kinematic and deformation descriptions. As shown in Fig. 3, there may be three ways to describe motions and
deformations of a pipe and transported fluid. These involve the descriptions by total Lagrangian, updated
Lagrangian, and Eulerian coordinates as follows.
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Fig. 2. Schematics of large displacements and large deformations.



192

S. Chucheepsakul et al. | Journal of Fluids and Structures 17 (2003) 185-224

u = (u,, N+, )i = ”nﬁ +vni
V, =(u,, n+@,, )l =u,0+ \",,1
t ), = (i, U+ (¥, , )T =i, 0+t

Undeformed
configuration

o .
Equilibrium Displaced
configuration

configuration

(@)

u = (U, )ﬁ.; + (Vo )iu = unﬁ + vn!
vl' = (&m".‘. )“o + (‘)nﬂl. )s’u ! ﬂn“ +‘}nE
1 a, = (unh.‘.)"o + (Vo M, =0+t

” / - / - n
-
Equilibrium Displaced
configuration configuration
Undeformed
configuration
(b)
(v % t . u =u i+t
' n

V, = (i, +v,00 + (¥, —u,0)t
a, = (ii, +2v,0 +v,0 -u,8" i
(¥, - 20,6 -u,b -v,60)t

i

. i G
Equilibrium Displaced 9 ot
configuration configuration .
i

Undeformed -

configuration
(©)

= The local observer, who monitors motions, deformations, and rotations of the pipe and transported fluid
with respect to the positions, directions, and sizes of the pipe and transported fluid at the state he stands.

Fig. 3. Physical descriptions: (a) total Lagrangian; (b) updated Lagrangian; and (c) Eulerian approaches.



S. Chucheepsakul et al. | Journal of Fluids and Structures 17 (2003) 185-224 193

Definition 1. The coordinate that follows motion and deformation of a deformable body with respect to position,
direction, and size of the body at the original state (or the undeformed state herein) is said to be the total Lagrangian
descriptor (TL) as shown in Fig. 3(a).

Definition 2. The coordinate that follows motion and deformation of a deformable body with respect to position,
direction, and size of the body at the intermediate state (or the equilibrium state herein) is said to be the updated
Lagrangian descriptor (UL) as shown in Fig. 3(b).

Definition 3. The coordinate that follows motion and deformation of a deformable body with respect to position,
direction, and size of the body at the final state (or the displaced state herein) is said to be the Eulerian descriptor (EL) as
shown in Fig. 3(c).

2.2. Large strain measurements

Corresponding to the three deformation descriptors defined in the previous section, definitions of the total axial
strain ¢, the static strain ¢,, and the dynamic strain ¢; can be provided in the following three forms.
(i) For deformation descriptor TL:

/

s

&= i 1, (1a)
/

=21, (1b)
s =4

&g = = 2 (1c)

(i1) For deformation descriptor UL:

/o
e=""" (2a)
SO
E/
& =1 5 (2b)
s
&g = ?—, — 1. (20)
2o
(iii) For deformation descriptor EL:
§/
e=1-— e (3a)
s =5
&o = Y (3b)
S/
gg=1- S—7 (3¢)

/

Note that ¢ = ¢, + &4, and the differential arc lengths at the undeformed, the equilibrium, and the displaced states §', s/,

and s’ may be expressed as

7 = /%2 +J—}/2’ (4a)

§, = & )+ + o), (4b)

in Cartesian coordinates:

s = \/ (® +u, + Y+ (F + 0, + ), (40)
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in natural coordinates:

§ =\ + 0,0 + (5, + v, — ,6])°, (4d)

The large strain expressions given by Egs. (1)-(3) can be exhibited in classical square-root forms of axial strains as
follows.

Definition 4. The large axial strain for flexible pipe analysis is defined by
s s
i l=¢+ <—/— 1)(1+80): v 1+4+2y;—1 for TL,
s —§ S
&= :80+<——1):\/1+2yd—\/1—2y0 for UL, (5a—c)

=/ J
1_s_,:go+(]—s—’/’):l—1/1—2yA for EL.
s s

In other words, the large axial strains are measured by means of ‘engineering strains’ or ‘relative elongations’. The
square-root expressions in Eqgs. (5) demonstrate that the large axial strains are functions of the lower-order axial strains
such as the static updated Green strain y,, the dynamic updated Green strain y,, the total updated Green strain y, the
Green strain y;, and the Almansi strain y,. By substituting Egs. (4) into Egs. (5), and undertaking some manipulation,
the expressions of these lower-order axial strains can be obtained as

1 =/_/ =/ ugz 1;172
yozﬁxu()+yvl7+7+7’ (63)
o
in Cartesian coordinates:
1 ul2 U/2
yd:ﬁ<x;u’+y:,vl+7+7), (6b)
o0

in natural coordinates:

(u;, + Ung:;)z + (U; - une:;)z
2 2 ’

1
vy = o {s;(v; - u,,@;) + (6¢)

o
P=00 V0 V6 =V/5V 4= /8) (6d—f)
For lower-order large strain analysis, the dynamic axial strains in Egs. (5) may be approximated by the two-term
binomial series such that

s’ s/ 1

— =1+ 2,21 +y,;,, L=—=1—-y, 7a—b

s Va Var 52y, Vd ( )
Inserting Eqgs. (7) into Egs. (5), the quadratic forms of axial strains are derived as Definition 5.
Definition 5. The nonlinear second-order axial strain for flexible pipe analysis is defined by

g +7,(1 +¢, or TL,
. Va( ) . J (8a,b)
&0+ 7y for UL and EL,

to which quadratic expressions of y,; as shown in Egs. (6b) and (6¢) are applied.

For linear approximation, the second-order terms of y, are negligible as higher-order terms, so that Eq. (6b) is
linearized to

in Cartesian coordinates:
1
Ya =5+ y,0'), (9a)
512
in natural coordinates:
1
Vd :sT(Ui’ —u,0). (b)

o

By utilizing Eq. (9), the linear forms of axial strains are derived as Definition 6.
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Definition 6. The linear axial strain for flexible pipe analysis is defined by Egs. (8), to which linear approximation of y,
by Egs. (9) is applied.

The large strain definition (Definition 4) is considered necessary for nonlinear dynamic analysis of flexible pipes, in
which large amplitude vibrations and large strain behaviour are concerned. The nonlinear second-order strain definition
(Definition 5) is desired for nonlinear dynamic analysis of flexible pipes, in which large amplitude vibrations with large
static and small dynamic strains are interested. The linear strain definition (Definition 6) is sufficient for dynamic
stability analysis and linear dynamic problems of flexible pipes, to which large static and infinitesimal dynamic strains
are relevant.

Variations of the axial strain among the three states bring about variations of differential arc length of the pipe, cross-
sectional properties of the pipe, and internal flow velocity of transported fluid as follows.

(a) Variations of differential arc length of the pipe. By solving Eqs. (1a) and (1b) for §, solving Eqgs. (2b) and (2¢) for /,,
and solving Egs. (3a) and (3c¢) for §', one obtains

! /

. s S
=—2° —_"  forTL 10z
3 Tte 11e or TL, (10a)
g , s’
R for UL 10b
1—¢, 5077 + &4 or (10b)
ki s, ,
=5 for EL. (10c)

178:17851

(b) Variations of cross-sectional properties of the pipe. The volumetric strain of the pipe is expressed as

de — va APS/ AP
— == —-1==1 -1 for TL
dvp Ap§ AP( +2) or ’
dvp — va APS/ — /_11)5/ Ap /ip
= - =220 te)— 221 —¢,) for UL, 1la—
¢ vaa APOSZ; APD( * bd) APO( § ) o ( a C)
va — va /_lpfl /_1p
- T _1- =1-"2(1- for EL.
va APS, Ap( 8) ot

Based on the control volume approach (Goodman and Breslin, 1976), the pipe volume is conserved, and thus the
volumetric strain of the pipe ¢, = &, = 0. Once these conditions are applied to Egs. (11), the cross-sectional areas of the
pipe at the three states can be related together as

Ap = Apy(1 +¢,) = Ap(1 +¢) for TL, (12a)

dp = Ap, (1 +ea)dp for UL, (12b)
1—e (1 — &)

Ap = Ao _ Ar g gL, (12¢)

l—e 1—c¢

Corresponding to Egs. (12), variations of diameter and moment of inertia of the circular pipe among the three states
are determined as

Dp = Dpy\/1+¢,=Dp\/1+¢ forTL, (13a)

3 Dp, 1
Dp=—2F — pp [~ por UL, (13b)
\/1—80 ]_80
- Dp, Dp
Dp=—=r — 2 for EL, (13¢)
T T—e Ji-e

Ip = Ip,(1 + &,)* = Ip(1 +¢)* for TL, (14a)
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7 Ip, -1 (1 +8d)2

il for UL, (14b)

= Ip, Ip

Ip = = for EL. 14
T e (140

(¢) Variations of internal flow velocity of transported fluid. From the fluid mechanics (Munson et al., 1994), the
continuity equation for transitions of a transportation rate among the three states can be displayed in the form
OVeu(s, 7)

) 15

o (15)

Nevertheless, because the pipe volume is conserved, time rate of control volume of the pipe 0V,,/0t is zero. With
application of Egs. (12), Eq. (15) yields the relationships of internal flow velocities at the three states as follows:

AiVi = Ai(50)Vios0) = Ails, )Vils, 1) +

> Vi Vi

Vi_l—o—sg_l—}—s for TL, (16a)
51 _ (A =e)V;

Vi=Vi(l —g) = 0T e0) for UL, (16b)
Vi="Vi(l —¢g)= Vil —¢) forEL. (16¢)

Physical interpretation of Eqs. (16) substantiates Propositions 1 and 2.

Proposition 1. The plug flow of incompressible fluid inside largely deformable pipes that is the steady uniform flow
@V; /0o = 0V; /0t = 0) at the undeformed state, would become the steady nonuniform flow (8V;,/0a#0, dV;, /0t = 0) at
the equilibrium state, and then the unsteady nonuniform flow (0V;/00#0, 0V;/0t+#0) at the displaced state.

Proposition 2. Extensibility of the pipes causes an increase of internal flow velocity of transported fluid.

2.3. The extensible elastica theory

A sophisticated strategy highlighted in this work is to adopt the extensible elastica theory for large strain
formulations of extensible flexible pipes. In Appendix A, the following extensible elastica theorems corresponding to the
three deformation descriptors are developed.

Theorem 1. For the Hookean material pipe, if the TL is employed to describe deformation of the pipe, then the constitutive
relations are

e =¢e+ gkl +¢) — K], (17a)
N = EApe, (17b)
M = EIp[k(1 4 ¢) — &), (17¢)
oU = /{N&s + Mo[k(1 +¢) — K]} d5 = /[Nés’ + M0 — 0] da, (17d)

in which ¢. is the axial strain at any fibre radius ¢, E the elastic modulus, N the axial force, M the bending moment, and
U the strain energy of the pipe.

Theorem 2. For the Hookean material pipe, if the UL is employed to describe deformation of the pipe, then the constitutive
relations are

e = e+ gl(l + eq) — /(1 — &), (152

N = Edp,s, (18b)
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M = Elpy[r(1 + &4) — =’(1 — &,)], (18¢)

oU = / {NJe + MJ[K(1 + &4) — R(1 — &,)]} ds, = / [Nos' + M0 — 0')] da. (18d)

Theorem 3. For the Hookean material pipe, if the EL is employed to describe deformation of the pipe, then the constitutive
relations are

e =¢+ ¢k —rk(1 —g)], (19a)
N = EApe, (19b)
M = Elp[k — /(1 — ¢)], (19¢)
oU = /{Née + Mo[k — k(1 —¢)]} ds = /[Nés/ + M5O — 0] do. (19d)

2.4. The apparent tension concept

Externally and internally flowing fluids interact with a pipe through hydrostatic and hydrodynamic pressures. The
apparent tension concept is proposed herein to represent the effect of hydrostatic pressures, while the effect of dynamic
pressures will be considered in the next section.

The apparent tension concept for handling the hydrostatic pressure effect of external and internal fluids is illustrated
in Fig. 4. First of all, Archimedes’ law, which will be used in the apparent tension concept, is recalled. As shown in
Fig. 4(a), equilibrium of an external fluid column in an external pressure field proves physically that the enclosing
external pressure field induces a vertical buoyancy force equal to the weight of the external fluid column p,gV,. This
tenet is commonly referred to as the first law of Archimedes. A reverse viewpoint of the first law of Archimedes yields the
corollary that the enclosing internal pressure field generates the apparent weight of the internal fluid column p;gV;.

It is remarkable that Archimedes’ principle is usable with the enclosing pressure fields. However, for marine pipes, the
pressure fields of external and internal fluids surround only external and internal side surfaces of the pipe segment, as
seen in Fig. 4(b). Both cut ends of the pipe segment are not subjected to the pressure fields, which are called the missing
pressures. Archimedes’ principle cannot therefore be used straightforwardly for marine pipe analysis. Fortunately, this
problem can be solved by the superposition technique to transform the real system into the apparent system of marine
pipes as follows.

Step 1: The total forces acting on the real system of the pipe column (the pipe plus transported fluid) as shown in
Fig. 4(b) are equal to the summation of the forces acting on the pipe columns in Figs. 4(c—):

Fig. 4(b) = Fig. 4(c) + Fig. 4(d) + Fig. 4(e). (20)

Step 2: The forces acting on the pipe column in Fig. 4(c) are equal to the summation of the forces acting on the pipe
columns in Figs. 4(f) and (g):

Fig. 4(c) = Fig. 4(f) + Fig. 4(g). Q1)

Step 3: The static pressures exerted on the pipe column in Fig. 4(f) are made enclosing the pipe column by adding in
the missing pressures at both cut ends of the pipe segment. However, the added pressures are nonexistent, so they must
be removed for balance by applying the opposite pressure fields at the both ends of the pipe in Fig. 4(g).

Step 4: After the pressure fields enclose the pipe segment, Archimedes’s principle is now applicable. Therefore, the
enclosing external and internal pressure fields induce the buoyancy force W, and the internal fluid weight W;:

We=p,Neg, Wi=pVig. (22a,b)

In addition, the enclosing pressure fields in Fig. 4(f) induce triaxial stresses, which in polar coordinates are: the radial
stress oy, the circumferential stress gy, and the tensile stress due to the missing pressures o,. These triaxial stresses
provoke the axial force

Tyi = EApeyi = (2\) - 1)(p€Ae _piAi)~ (220)
Note that from the theory of elasticity (Timoshenko and Goodier, 1984):
eri = [0 — (o, + 09)]/E, (22d)
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External fluid

Internal fluid
column ol
2.8Y, P.8Y,
Enclosing external pressure Enclosing internal pressure field
field induces the upthrust force induces the apparent weight
(a)

Pipe column = pipe + transported fluid

Interfacial forces

Total forces of Static pressures, Dynamic pressures, ;
. i . (fluid-structure
real system pipe's weight, and tension shear, and moment ; i
interaction)
(b) (c) (Y (e)
Add in the missing pressure Balance the missing pressure

Static pressures, Static and missing pressures, Missing pressures
pipe's weight, and tension and pipe's weight and tension
(c) ( (g)

Use Archimedes' law
(see Fig.4(a)) and
theory of elasticity

(triaxial stress)

Il

W, =W, ) W,
Tension due to triaxial .
i issi res Weight of
Static and missing pressures, stress, upthrust force gl

and pipe's weight and pipe's weight transported fluid

0} (h) ®

Fig. 4. Transformation from the real system to the apparent system.
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(T+pA) A +d(pd)
A A P +d(p4,

Use the fact that fluid
—l_ cannot resist tension

P4,
Missing pressures Missing pressures Missing pressures
and tension and tension
(g @ (k)
>
Use the fact that fluid
cannot resist shear and
Fia moment
Dynamic pressures, Dynamic pressures, Inertial forces due to dynamic
shear, and moment shear, and moment pressure of internal flow
(d) U] (m)
2
2
Interfacial forces Normal reaction Normal reaction
(fluid-structure and wall shear and wall shear
interaction) friction friction
(e) (n) (0)
Fig. 4 (continued).
and the enclosing pressure fields in Fig. 4(f) yield
og=0p+1, 0,=0p—71, 09+, =20p, (22e—g)
op = (pidi — peAe)/Ap, (22h)

where 1 is the shear stress in pipe wall, and op the end effect stress (Sparks, 1984).
Step 5: The pipe column in Fig. 4(f) is decomposed into a combination of the pipe element in Fig. 4(h) and the
transported fluid element in Fig. 4(i):

Fig. 4(f) = Fig. 4(h) + Fig. 4(i). (23)

The effect of the enclosing pressure fields is replaced by W, and Ty in Fig. 4(h), and by W; in Fig. 4(i).
Step 6: The pipe column in Fig. 4(g) is decomposed into a combination of the pipe element in Fig. 4(j) and the
transported fluid element in Fig. 4(k):

Fig. 4(g) = Fig. 4(j) + Fig. 4(k). (24)

The missing pressure p. A, is entirely transmitted to the pipe element, because the transported fluid element cannot
resist tension.
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(ntp - m,)gs'da
(F+T,+pd)
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®)

Fig. 4 (continued).

Step 7: The pipe column in Fig. 4(d) is decomposed into a combination of the pipe element in Fig. 4(1) and the
transported fluid element in Fig. 4(m):

Fig. 4(d) = Fig. 4(1) + Fig. 4(m). (25)

Shear forces and bending moments are entirely transmitted to the pipe element, because the transported fluid element
cannot resist them.

Step 8: The pipe column in Fig. 4(e) is decomposed into a combination of the pipe element in Fig. 4(n) and the
transported fluid element in Fig. 4(o):

Fig. 4(e) = Fig. 4(n) + Fig. 4(0). (26)
Step 9: Substituting Eqs. (21), (23)—(26) into Eq. (20) together with some manipulation, one can obtain the expression
Fig. 4(b) = [Fig. 4(h) + Fig. 4(j) + Fig. 4(1) + Fig. 4(n)] + [Fig. 4(i) + Fig. 4(k)Fig. 4(m) + Fig. 4(0)]. 27
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The first bracket on the right-hand side of Eq. (27) represents the apparent system of the pipe as portrayed in Fig. 4(p),
while the second bracket expresses the apparent system of transported fluid as displayed in Fig. 4(q). Combination of
the apparent systems of the pipe and transported fluid in Eq. (27) yields the overall apparent system of the pipe column
that is subjected to the apparent weight w, and the apparent tension 7, as shown in Fig. 4(r).

Writing expressions for the apparent weight and the apparent tension generally for the three deformation descriptors,
one obtains

Wwa = (ppdp — p.Ae + p;iA1)g, (28)

T,=EApe=T + 2\/([76/1(», - pl‘;lf), (29)

in which A, = A4, for TL, A, = A,, for UL, A, = A4, for EL, and the subscript o€ {P, e, i}.
Ability to transform the real system into the apparent system of the pipe column establishes Proposition 3 that
describes the apparent tension concept.

Proposition 3. The real system of the pipe column that is subjected to static external and internal pressures as shown in
Fig. 4(b) is equivalent to the overall apparent system of the pipe column that is subjected to the apparent weight and the
apparent tension as shown in Fig. 4(r).

On the other hand, the apparent tension may be expressed as
Ty =T+ Tui, (30)

where

T =T+ peAe — piA; 3D

is referred to as the effective tension (Sparks, 1984). From Egs. (29), it is seen that the condition 7, = T, is achieved if,
and only if, v = 0.5. This signifies that the effective tension concept is a subset of the apparent tension concept, and can be
evidently inaccurate, whenever realistic Poisson’s ratio of the pipe is significantly different from 0.5.

2.5. Dynamic interactions between fluids and pipes

For flexible marine pipes transporting fluid, dynamic interactions between fluid and pipe occur due to steady and
unsteady flows of external and internal fluids through the displaced pipe. Steady flows will cause quasi-static forces, and
unsteady flows will engender dynamic forces to act on the pipe wall. The flow outside the pipe is normally associated
with cross flows of ocean currents and waves, whereas the flow inside the pipe relates to the tangential flow of
transported fluid.

2.5.1. Hydrodynamic forces due to cross-flows of currents and waves
Based on the coupled Morison equation (Chakrabarti, 1990), the hydrodynamic forces exerted on flexible marine
pipes with large displacements in natural coordinates can be expressed as

f Hn ConYu I?"n I Vn Vi
fH = = OspeDe‘ + peAeca R + peAe . > (32)
S 7Coiyy|vi| i Vi
—_——
Viscous drag force Hydrodynamic mass force Froude—Krylov force

where overdot denotes 0()/0t, Cp, and Cp, are the normal and tangential drag coefficients, C, the added mass
coefficient, Vy, and Vg, the normal and tangential velocities of currents and waves; and y, = Vg, — %, and y, =
Vi, — 0, are the velocities of currents and waves relative to pipe velocities i, and 0, in normal and tangential directions,
respectively. For large strain consideration, the effect of cross-sectional changes of the pipe according to Egs. (12) and
(13) has to be applied to Eq. (32).

In order to eliminate the difficulty of operating with absolute functions in Eq. (32), the signum function is introduced:

1 if y>0,
sgn(v)={_1 %io (33)
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Using the signum function, Eq. (32) can be manipulated into the form
f[-] _ an - C; 0 iy o C:qn 0 ity + CZ)n Vl’%ln+c;ll VH” (34)
S 0 C| Lin 0 Col Lon Cp, V2, +Cr Vi
——— ~——— —_—
Added mass force  Hydrodynamic damping force ~ Hydrodynamic excitation

where the ¢ oefficients of equivalent damping and drag forces in the normal direction are

Con = Cpul2Vin — ), Cp,, = 0.5p,D.Cp, sgn(y,); (35a, b)
the coefficients of equivalent damping and drag forces in the tangential direction are
Cop = Cpl2Vi = i), Cp, = 0.5p,DnCpy sgn(y,); (35¢.d)

and the coefficients of added mass and inertia forces are
Cy = pAcCar  Chpp = p,A:C, (35e. f)

in which Cy; = 1 + C, is the inertia coefficient.
In Cartesian coordinates, Eq. (34) can be transformed to

£, { fo} _ {c;o} {x} B [ijqvchxy] {‘c} N {CZXV,Z,FLZC;XJ,I Vit Viry+Chy Vi +Cy r/,,,\}’
Ty 0C |y Coy Cogp] I Co Vi t2C Vit Vi +Co Vi + oy Viy
Added mass force  Hydrodynamic damping force Hydrodynamic excitation
(36)

where V. and Vy, are the horizontal and vertical velocities of external fluid; the coefficients of equivalent damping and
drag forces in the horizontal direction are

C:q.x = C:qn cos” 0 + C:q[ sin’ 0, Cp, = Cp, cos 0+ Cp, sin® 0; (37a,b)
the coefficients of equivalent damping and drag forces in the vertical direction are
C:qy = C:qn sin® 0 + C:q, cos? 0, CZ}, = —C;)n sin® 0 + CZ, cos?® 0; (37¢,d)

the coupling coefficient of equivalent hydrodynamic damping in the x — y plane is

Copy = (—Copy+ C

eqn e

*

q)sin 0 cos 0; (37e)
and the coupling coefficients of drag forces in the x — y plane are

= —C), sin0cos’ 0 + Cj, sin” 0 cos 0, (37f)

*

Cp

xyl

*

Cpyya = Ch,, sin® 0 cos 0 + C}, sin 0 cos” 0. (37g)

At the equilibrium state, static loading is due only to the steady flow of external fluid. Therefore, the hydrodynamic
forces from Egs. (34) and (36) are reduced to

o Couo V7
ng _ fH _ )ino 12~1na , (38)
me CDm VHm

f {foo C:)xo VI%IXU + 2C:)xyla VHXO VHyo + C;nyo VI%Iya
Ho — = s
f Hyo

= * 2 * * 2 (3 9)
CDyo VHyu + 2CnyZo VHXU VHyﬂ + CD VHxa

xylo

respectively. Note that the additional subscripts ‘0’ on all variables designate the equilibrium-state parameters. For
example, C}Sm) implies the equilibrium state of an; hence, Eq. (35b) uses equilibrium-state parameters to obtain
CDm; = O~5pgDea CDn sgn(y,w),

2.5.2. Hydrodynamic forces due to internal flow of transported fluid

Based on the control volume approach of Computational Fluid Dynamics, hydrodynamic forces due to flow of
transported fluid inside extensible flexible pipes with large deformation can be derived as follows. Let Vg and Vp
represent the velocity vectors of transported fluid and the pipe with respect to the fixed frame of reference, then the
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velocity vector of transported fluid relative to the pipe velocity is given by
VFP = VFP’t\ = VFP 6rp/as = VF — VP, (40)
where Vpp is the internal flow velocity function: Vip = Vi, Viep = Viy, and Vpp = V; at states 1, 2, and 3, respectively.

From Newton’s law of momentum conservation, hydrodynamic pressures due to internal flow induces the inertial
force on the transported mass:

D(p;V Do.
/ B; dv; = / Mdvi = / { Pi Vr+ piaF] dv;, 41)
v, v, Dt v,

Dt

where B; is the inertial force per unit control volume V;, ar the acceleration vector of transported fluid with respect to
the fixed frame of reference, and

D() d() o0) , Vrr ()
_~/_-x/ . =7 =7 42
D¢ ot + Ve -0 ot + s’ o “2)
Note that
6X¢ 6y¢ 0z A a'; 6¢ 0~ 0 V[:Pa
V= —i+—j+—k||—i+—j+=—k| = —=— 4
Ver.V VFP[@SI+65J+GS ]{le—i_@yj_‘—az } VFP@S s’ Oa “3)
Lemma 1 shows that Dp,/Dt vanishes.
Lemma 1. The conservation condition of transported mass yields Dp;/Dt = 0.
Proof. Utilizing Eq. (40), Eq. (41) can be written as
D(p;Vp) / D(p;Vrr)
B;dvY; = —| dv; —2| dv,. 44
Jwan= [ [P e [ [P @
From the Reynolds transport theorem (Shames, 1992), the last integral is given by
D(p;V 0
R av = 2] [ oiVen) av| + B VertoVien aa, 9)
Vi t ot Jy, i,
where Ay; is the vector of internal control surface of the pipe A.
Employing the Gauss divergence theorem, one can demonstrate that
$Ver(p,Vir - dAy) = / [(0;VEp - V)VEp + V- (p;Vrp)Vpp] dVi. (46)
A; JVi
Substituting Egs. (46) into Eq. (45) together with some manipulation, one obtains
D(p;V ov op;
(p]ID ) dv; = / pi { 2 (Vep- V)VFP} + {ﬁ + V- (p;Vrp)| Vrp ¢ dVi. 47
Vi t v, ot ot

() ()

Referring to Eq. (42), the bracketed term (1) is known as the acceleration of transported fluid agp, whereas term (2) is
zero due to the continuity condition of conservation of mass. Thereby, Eq. (47) yields

D(p;Vrr)
—L " = p.agp. 48
D1 p;aFp (48)
Since
D(p;Vrp) _Dp;
YRR ZFiy ,
D1 D¢ P PAER

and Vpp#0, Eq. (48) is valid if, and only if,
Dp,;/Dt = 0.0 (49)

Using Lemma 1 in Eq. (41), one can constitute Proposition 4.
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Proposition 4. Internal flow of transported fluid through the moving, deforming internal control volume of the pipe induces

the inertial force exerted on the pipe wall:
B; =p,ar or F;=mar,

where ¥; and m; are the inertial force and the transported mass per unit

length of the pipe.

(50a, b)

From Eqgs. (50), it is seen that determining the inertial force on the transported fluid needs the expression of
transported mass acceleration ap. Based on Eulerian mechanics (Huang, 1993), the velocity and acceleration of

transported fluid can be derived as

or Vp Or
VF:VP+VFP:a—tP+ 5Pa_:’

DVP DVFP _ D al‘p D VFP al'P
D: Dt _’447<7§f) iif( s/ ?if)
_ 62rp VFP 621‘1) VFP azl‘p VFP azl‘P

B {W s %} s {aa ot TW] {

ap =ap+app =

+la() +

ap

Eq. (52) can be rearranged to obtain

agp

! o 2 M
VFP VFP . VFPS VFPS 6rp

ar =

azl'p (2 VFP) azl‘P (VFP>2621'1) VFP

or? s’ JOaot s
~—~— ~—
(1) 2 3) (©)] (5)

o2 s 572 572 s oo’
~~~ —_———

(6)

Vip @ (Vip\|Orp
A AR oo

(1)

(52)

(53)

in which term (1) is the transported mass acceleration, (2) the coriolis acceleration, (3) the centripetal acceleration, (4)
the local acceleration due to unsteady flow, (5) the convective acceleration due to nonuniform flow, and (6) the relative

accelerations due to local coordinate rotation and displacement.
In 2-D Cartesian coordinates, at the displaced state:

Vip=Vi, tp=xi+), & =Vx2+ 2, s =xx"+))', ss
Inserting Eqgs. (54) into Egs. (51) and (53), one obtains
Vi =[x+ VX' [T+ [+ V' /55

=i |G- )¢ ()

e
fre [ G)e G- (5)7

K y/ y/2 ¥ y/ KX ¥ y/ x/2
== x// _ = y//’ —_—= = x// + = y//.
N s S s s S

In 2-D natural coordinates, at the displaced state:

Vip = Vi,
or o
L,
O
Or

=s0n+ 5"t
a2 +
azrp N

=x'x +y'y.

()
(o

(54a—e)

(5%)

(56)

(57a,b)

(58a)

(58b)

(58¢)

(58d)
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62rp AR g
il On + §'t. (58e)
Exploiting Egs. (58), Egs. (51) and (53) yield
Vi = iy + (0, + V)t (59)
. i DV,
ap = [il, +2V,0 + V7] + [ﬁn+V—f+ ']t. (60)
s Dt

It is evident that the relative accelerations due to local coordinate rotation and displacement vanish in the natural
system.

At the equilibrium state, Vip = Vi, (X,1) = (X0, 10), Uy = vy, =0, (s,0) = (s,,0,), and the time-dependent terms
vanish. Thereby, Egs. (55), (56), (59), and (60) are reduced to

Vi = (VX [+ (Viod, /5 = Vik, (61)
Ko, i) 2 Vio Vi,o‘x :) 2 K(,X:) 2 Vio Vi/o Y :) 2 27A V,‘(, VIIO 2
ar, = / Vio + / / 1+ - / Vio + / o 1= [K” Vfa}n + ! t. (62)
So So o So So 0 So

3. Virtual work formulations

Based on the method of virtual work, the fundamentals of large strain modelling proposed in Section 2 are employed
to develop large strain formulations of extensible flexible marine pipes transporting fluid as follows.

Step 1: Converting the real system into the apparent system of the marine pipe by the apparent tension concept
(Section 2.4).

Step 2: Applying the extensible elastica theory (Section 2.3) on the apparent system to obtain the stiffness or internal
virtual work equation.

Step 3: Expressing the equation of external virtual work induced by the apparent weight (Section 2.4), hydrodynamic
forces due to external and internal flows (Section 2.5), and inertial forces of the pipe.

Step 4: Applying the principle of virtual work to generate weak and strong forms of the large strain formulations of
the apparent system.

3.1. Step 2: Applying the extensible elastica theory on the apparent system
In Fig. 4(r), the overall apparent system is subjected to the apparent tension 7, in place of the axial force N of the real

system. Therefore, applying Eqgs. (17d), (18d), and (19d) of the extensible elastica theory on the apparent system yields
the stiffness equation:

U, = / [T,08 + MS© — )] do, (63)
where U, is the strain energy of the apparent system,
T, = EApe, (64a)
EIp[k(1 + &) — /] for TL,
M = ( Elp,[x(l + ¢4) — &(1 —¢&,)] for UL, (64b)
Elp[k — (1 — ¢)] for EL.

From the assumption that the pipe is straight in the undeformed state, and the basic formulas of differential geometry,
one has

k=0 =0, (65a)
s =x'"+y, (65b)

6/ _ (x//y/ _ x/y//)/SIZ. (650)
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Substituting Eq. (65a) into Eq. (64b), and taking the first variation of Egs. (65b) and (65¢) in association with the
coordinate transformations of the displacement vectors, one obtains

EIp(1+¢) for TL,
M = Bk, B=1< Elp,(1+¢4) for UL, (66a,b)
Elp for EL,

in Cartesian coordinates:

/ /
o5 = (%) ou' + (}SL/) o, (67a)
N 1 y/ N x/ S// y/ 1 x/ y/ S// x/ N
80 = ;<?) ou’ — l:K (y) + sﬁ(? ou — v o' — |k 7)Y o, (67b)

in natural coordinates:

os' = ovl, — 0/ duy, (68a)
/ /
o0 = 9 M ) (68b)
Ou s

By substituting Egs. (66)—(68) into Eq. (63), and then taking integrations by parts twice, the three forms of the internal
virtual work can be expressed as follows:
Form 1: In Cartesian coordinates:
/
(5]
s
do

B ] J 1

SR sur + (1, - B (S ) - Bes

s\ s 52
U, = /

69a
(Y o [ m(2) + m () o [ o

and in natural coordinates:
oU, = / {[=T.0'] o, + [T.) 6v), + [M]60'} do. (69b)

Form 2 (after a first integration by parts): In Cartesian coordinates:
oU, = [M 601y + /{H ou' + V &'} do, (70a)
a

and in natural coordinates:

8U, = 1M 80, + [ (-1Q161], ~ [T,0)om, + T.)5, + (001, . (700)

where

H:Ta(il’) _Q(Ji,'), (T1a)

S S

v Ta(y_') ; Q(i,'), (71b)
S S

0=—= : (71c)

Form 3 (after a second integration by parts): In Cartesian coordinates:
oU, = [H ou+ Vov+ M0l + /{[—H/]éu + [ V"10v} da, (72a)
and in natural coordinates:

0U, = [Ty 00y — Q Suy + M S0} + /{[Q’ — T,015uy + [~ T, — Q6] $v,,} do. (72b)



S. Chucheepsakul et al. | Journal of Fluids and Structures 17 (2003) 185-224 207

Note that
X//S/ =sin0, y//sl =cosf, k= 9//3 _ (x” f_ //)/5’3

3.2. Step 3: Expressing the equation of external virtual work

The equation of external virtual work is given by
oWy =W, + Wy + Wi, (73)

where W,,, Wy, and W are the virtual works done by the apparent weight, hydrodynamic pressures, and inertial forces
of the pipe and transported fluid. In Cartesian coordinates:

W, = — / wgs' ovda, (74a)
Wy = / [(Frixs) Ou + (fiy8)0v] do, (752)
SWp = — / [(mpapy + mjag,)s' ou+ (mpapy + miag,)s' 6v] do. (762)

In natural coordinates:

oW, = — /[(fwas’ sin 0) duy, + (wys' cos 0) év,] da, (74b)
Wi = [ ) 31 + () o0,] (75b)
oW = — / [(mPaPn + mjag,)s' du, + (mpap, + miag)s' 504 do. (76b)

Note that ap = apxl + Clp)] =fp= i +yJ = ul + v] and ap = apnn + apt = iiyhi + §,t. The expressions of w,, fy =
S + fud, g = fHYl —‘,—fH}], ap =apd+ aplj, and ap = aph + apt are given by Egs. (28), (34), (36), (56), and (60),
respectively.

Substituting Egs. (74)—(76) into Eq. (73), in Cartesian coordinates one obtains

oW, = / {5'[ftrx — mpapx — miap] du} do
p
+ /{s/[—wa + fry — mpapy, — miap,) $v} da, (77a)
and in natural coordinates:
oW, = /{s’[w,, sin 0 + fy, — mpap, — m;ag,] (3u,,} do

+ /{s’[fwu cos 0 + fu — mpap; — miag] v, } dot. (77b)
o

3.3. Step 4. Applying the principle of virtual work

From the principle of virtual work, the total virtual work of the apparent system is zero:
on, =oU, — oW, = 0. (78)

By substituting Eq. (69), (70), (72), and (77) into Eq. (78), the three weak forms of the total virtual work are obtained as
follows:
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Weak form 1: In Cartesian coordinates:

om, = / @ Y ou" + (T, — B;cz) ) I BICS— o Sul — S’[fo — mpapy — Miary] ou p do
” s s s s/2 s

BK x/ / S// X/
+ /[,{_T(F) o + {(Ta — Br?) <Jsi,) + BK@(?)] v — §'[—wy + fuy — mpap, — miap) (317} da = 0.

(79a)
In natural coordinates:
on, = /{fTaGI — §'[wg sin 0 + fu, — mpap, — miag,]} ou, da
+ /{[Ta] o), — s'[—w, cos 0 + fr, — mpap, — mjag] dv,} do
+ /{[M] 80"} do = 0. (79b)
Weak form 2: In Cartesian coordinates:
Smy =[M 0T + / {HoU — 'y — mpap, — mar,] Su} do
o
+ / {(Vou — s'[—wy + fuy — mpap, — mjap,]ov} doo = 0. (80a)
Ja
In natural coordinates:
ony =[M o0} + /{—Qéu; — [Tl + 5'(wy sin 0 + fy, — mpap, — m;ag,)] Su,} do
+ /{Taév; +[00" — 5'(—w, cos 0 + fu, — mpap, — m;ag,)]ov,} do = 0. (80b)
Weak form 3: In Cartesian coordinates:
ony =[H du+Vév+ M o0l + / {[—H' — 5 (frx — mpap, — mjar,)] du} da
+ /{[f V' — ' (—wq + fuy — mpapy, — miag,)] 6v} do = 0. (81a)
In natural coor(iinates:
ong = [Ty0v, — Q ouy + M 01
+ /{[Q/ — T,0" — 5'(wy sin 0 + fy, — mpap, — myag,)] du,} da
+ /{[—T(; — Q0 — 5'(—wy cos 0 + fy, — mpap, — myag,)] ov,} do = 0. (81b)

3.3.1. Governing equations by weak form 1

In view of Egs. (79), the following conditions are necessary and sufficient for dn, to vanish for all admissible
functions of virtual displacements.

In Cartesian coordinates:

B / / " /
Omgy =0 /{S—:< (%) ou” + [(Ta — Bi?) (%) — B;c;% (%)} ou — §'[fgy — mpapy — miary] 5u} do =0, (82)

B B / ! S I !
Omgy =0¢ /{——:c(il) ov" + {(Tu — Br?) (y_,) + BK%(ﬁ)] V' — §'[—wq + Sy — mpapy, — miap) 50} do = 0.
’ a sT\s s s\

(83)
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In natural coordinates:

1 I

Oty =0 /{ [lj—,} oull — |:BK 572} Sul, + [~ Tal — 5'(wy $in6 + fi, — mpap, — miap,)] 5u,,} do =0,
o
2 / Bx /! " /
Oy =0 /{[T,, + BK*| ov), + {7(9 — k8" — 5'(—wy cos 0 + fy, — mpap, — miap,)} 51),7} do = 0.

3.3.2. Governing equations by weak form 2
Similarly, in view of Egs. (80), the following conditions have to be valid.
In Cartesian coordinates:

0Ty =0 /{Héu’ — §'[frxe — mpapx — myap,] du}y do = 0,
o

Omgy =0 /{V(SU’ — 5'[=wa + fuy — mpap, — miag,] 6v} do = 0,

with the natural boundary condition of bending moment:
[M 601 = 0.

In natural coordinates:

Ot =0 /{fQ(Suﬁ7 — [T + 5'(Wy sin 0 + fy, — mpap, — mag,)] Suy,} do = 0,
o

Oongy =0 /{Taév; +[00" — 5'(—wucos + fri, — mpap, — miag,)] ov,} do = 0,
with the same boundary condition as Eq. (88).

3.3.3. Governing equations by weak form 3
Likewise, the necessary and sufficient conditions of Eqgs. (81) yield the weak form 3.
In Cartesian coordinates:

PE— / {=H' — $(fox — mpaps — myaps)] du} da = 0,
o

Oty =0: /{[f V' — ' (=wy + fuy — mpapy, — mjag,)] 6v} doo = 0,

with the natural boundary conditions of horizontal and vertical forces, and bending moment:

[H ou+ V ov+ M o0]; =0.

In natural coordinates:

0Ty =0 /{[Q, - Tagl - S/(Wa sin 0 + fy, — mpap, — miag,)] éu,; do = 0,

Oong =0 /{[— T, — Q0" — §'(—w, cos 0 + fu, — mpap, — mar,)] év,} do = 0,

with the natural boundary conditions of apparent tension, shear force, and bending moment:
[Te 6y — Q Suy + M 60 = 0.

209

(84

(85)

(86)

(87)

(88)

(89)

(90)

oD

92)

93)

94

935)

(96)

It is important to make a decision which forms of governing equations should be used. In the governing equations by
weak form 1, there is no natural boundary condition (BC). So if those equations are employed, all natural BCs may be
unconstrained. Another choice is using the governing equations by weak form 2 such that all essential BCs and some
natural BCs such as Eq. (88) would have to be constrained. On the other hand, if the governing equations by weak form

3 are selected, all essential BCs and all natural BCs such as Egs. (93) and (96) need to be constrained.



210 S. Chucheepsakul et al. | Journal of Fluids and Structures 17 (2003) 185-224

3.3.4. Strong formulations by weak form 3

By considering that all virtual displacements ou, dv, ou, and ov, in Egs. (91), (92), (94) and (95) are nonzero, the

following strong formulations are achieved:
(i) Force-based strong form. In Cartesian coordinates:

TFc=0:—H —5(fux — mpapx — mjap,) =0,

SF,=0: V' =5 (—w,+ fuy — mpap, — mjap,) = 0.
In natural coordinates:

TF,=0:0 —T,0 — s (w,sin 0 + fu, — mpap, — miap,) = 0,

SF,=0:-T,— 00 — 5 (—w,cos 0 + fir; — mpap; — miag;) = 0.

o7

(98)

99)

(100)

If the right-hand sides of Eqgs. (97)—(100) are considered as the residuals, one can demonstrate that based on the
Galerkin method, Egs. (91), (92), (94) and (95) yield the weighted residual forms of Egs. (97)—(100), respectively. This
fact indicates that the governing equations obtained from the weak variational method and the Galerkin residual
method, are the same. As a result, if both methods used the same approximating functions, their solutions would be

identical.
The vector expressions of Egs. (97)—(100) are given by

—P — (—waj + Ty — mpap — map) =0,

where the internal force vectors P are represented by

H T.0 — O s =X )s | | H
Py, = and Py =4 2L / ,
|4 T, + Q0 xX/s Vs |4
in Cartesian and natural coordinate systems, respectively.
(ii) Displacement-based strong form. Based on Egs. (71a)—(71c), one can demonstrate that

H= |:(7a - BK2) ,/ BK(S//;) (y/,):| |: f(y:):|/a
S S N N N

[( ¢ Kz) ll K(Sl,;) (x:):| |: :C(XI/):| /’
S N A S S

consequently, one obtains

B 2 I'p s\ 0 (rp " [B?d rp "
P'—{(Ta*B’”TB(?sa? “la\y )]

Note that

o (Y 0 (/x"\s 0 /)V\2 2 A ~

Utilizing Eqgs. (53) and (104), Eq. (101) can be transformed into the displacement-based form:

azl'p ZVFP azl'p B 0 l';, "
Smp +mi)ms “,'”"( ¥ )aaat+ [ﬁ&(?)}

2A2
) l'g; s\ 0 l’/P ! V]:P 0 rp
- {(T“‘B“ )TB(ST% ol )| Py ) e
’ VFP VI/TP . VFPS‘/ _ VI%PS//:| al‘p

/ VA /
+ s'm; — =5ty —sw,j—sm;
S/2 5/2 5’3 Oo

Vir|Orp
s | Qa”
If « = s is used and the internal flow effect is excluded, Eq. (106) is reduced to

mpip + (Bry)' — (T, — Bl = fu — waj,

which is compatible with the vector equation of motion of slender rods given by Garrett (1982).

(101)

(102)

(103a)

(103b)

(104)

(105)

(106)

(107)
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4. Vectorial formulation

Based on the vectorial method, the fundamentals of large strain modelling proposed in Section 2 are employed to
develop large strain formulations of extensible flexible marine pipes transporting fluid as follows.

Step 1: Converting the real system of the pipe column into the apparent systems of the pipe and transported fluid by
the apparent tension concept (Section 2.4).

Step 2: Using the Newtonian derivation for the apparent systems of the pipe and transported fluid.

Step 3: Integrating the individual systems of the pipe and transported fluid into the overall apparent system, which is
subjected to the apparent weight (Section 2.4), hydrodynamic forces exerted by external and internal flows (Section 2.5),
and inertial forces of the pipe.

Step 4: Applying the extensible elastica theory (Section 2.3) on the apparent system to obtain the constitutive
equations.

4.1. Step 2: Using the Newtonian derivation for the apparent systems

Consider Fig. 4(q). The apparent system of the transported fluid element with the length s do is subjected to (i) the
internal pressure p;; (ii) the internal fluid weight m;g; (iii) the inertial forces m;ap, and m;ap,; and (iv) the normal reaction
fm and the wall-shear friction 7,,. Note again that o could be any parameter used to define the elastic curve of the pipe,
and ()’ = d()/0w. Applying Newton’s second law in normal and tangential directions, one obtains

ZFn =0 :fmsl = (piAi)G/ - (mlg sin 0 — miaFn)Sla (108)

> F=0:1,8 = (pidi) + (mig cos 0 + miag,)s, (109)

in which (s, 0) are the coordinates of arc length and rotation. Similarly, for the apparent system of the pipe element as
shown in Fig. 4(p), applying Newton’s second law in normal and tangential directions yields

S Fa=0:fus = =Q + (T + Tyi + peA)0 + [fimn + (mp — me)g sin 0 — mpap,]s', (110)
S F =01t = Q0 + (T + Tyi+ peAe) + [fur — (mp — m)g cos 0 — mpap,Js', (111)
> M, =0:M =05, (112)

where T, Q, and M are the true wall tension, shear, and bending moment, respectively, p, the external pressure, f, and
Jfr: the hydrodynamic forces of external fluid given by Eq. (34), mpg the pipe weight, —m,g the buoyancy force, mpap,
and mpap, the inertial forces of the pipe, and T, the tension induced by triaxial pressures given by Eq. (22c¢).

4.2. Step 3: Integrating the individual systems of the pipe and transported fluid into the overall apparent system

The relationship between Egs. (108) and (110), and Eqgs. (109) and (111), respectively indicates that the interaction
between the pipe and the transported fluid is such that physically the reaction f,, and the friction 7 have the effects of:

® transmitting the effect of hydrostatic and hydrodynamic pressures of transported fluid represented by the right-hand
side terms in Eqgs. (108) and (109) into the pipe wall through the left-hand side terms in Egs. (110) and (111), and

® conversely, transmitting the effect of resultant forces in pipe wall represented by the right-hand side terms in
Egs. (110) and (111) into transported fluid through the left-hand side terms in Egs. (108) and (109).

The former effect induces deformation of the pipe, and the latter alters the characteristics of the internal flow of
transported fluid as described by Proposition 1.

The interaction links together the individual systems of the pipe and transported fluid into the overall system. Using
this fact, one substitutes Eq. (108) into Eq. (110), and Eq. (109) into Eq. (111) to obtain

SF,=0: Q —T,0 —5(w,sin0 + fy, — mpap, — miag,) = 0, (113)
SF,=0: -T,— 00 —5(—w,cos 0+ fg, — mpap; — mar;) = 0, (114)

where w, and T, are referred to as the apparent weight and the apparent tension, as given by Egs. (28) and (29). The
governing differential Eqs. (112)—(114) describe the nonlinear behaviour of the overall apparent system of the pipe.
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Comparing Egs. (113) and (114) with Egs. (99) and (100), we can see that the vectorial method yields the same force-
based strong formulation as that obtained from the virtual work method. Thus exact agreement between the virtual
work and vectorial formulations is confirmed.

4.3. Step 4: Applying the extensible elastica theory on the apparent system

On the apparent system, the axial force appears to be the apparent tension 7, rather than the true wall axial force N
of the real system. Applying the extensible elastica theory on the apparent system therefore deals with replacing the
axial force N in the constitutive Eqgs. (17b), (18b) and (19b) by the apparent tension 7,. As a result, Egs. (64) are
obtained as the constitutive equations of the apparent system.

Based on the foregoing derivations along with the geometric relations, the governing equations for the vectorial
formulation are summarized as follows:

(a) Geometric relations:

X'/ =sin0, /s =cos0, w=0/s="y —xy"/s". (115a—c)

(b) Constitutive equations:

T,= EApe, M = Bxk. (116a,b)

(c) Equilibrium equations:

M =50, (117)
Q/ = Ta0, + S/[an + Wy sin 0 — (mPaPn + miaFn)], (1 18)
T, = —Q0' — 5'[fu; — wa cos 0 — (mpap; + miag)). (119)

5. Nonlinear dynamic, large amplitude vibration models

Based on the virtual work and the vectorial formulations, the governing equations describing nonlinear dynamics of
the flexible marine pipe have been achieved in the three weak forms such as Egs. (82)—(85), (86)—(90), and (91)—(96), and
in the one strong form such as Egs. (97)—(100), or Egs. (101) and (106), or Egs. (115)—(119). Hence, large amplitude
vibration models of the pipe may be generated in four ways, namely from any of the three weak forms or the strong
form. However, if the weak forms are employed, the intermediate procedure will require application of some
approximate method such as the Rayleigh—Ritz method, the assumed-modes method, or the finite element method. A
drawback is that these methods are applicable to self-adjoint systems alone. On the other hand, the models obtained via
this approach are concerned with integral equations.

On the other hand, in the case where the strong form is exploited for creating the models, there is no need for any
approximate method to be used during the process, and the obtained models deal with differential equations. This yields
the possibility of using a broad range of numerical solution methods, including the weighted residuals methods, which
are applicable to both self-adjoint and nonself-adjoint systems. For the sake of generality in obtaining the model
solution, the strong form thus seems preferable to the weak forms. Derivation of the nonlinear dynamic models based
on the strong form given by Eq. (106) is as follows.

5.1. Large amplitude vibration models in the Cartesian system

By utilizing Eqgs. (54) and introducing the position vector in the Cartesian system
x={x »t, (120a)

one has the gyroscopic matrix

miVi 23/2 _ xlz _x/y/

s/2 /5

120b
—x'y 25" —y ( )

2|2
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the bending stiffness matrices

B y/z _ x/y/ Bic Zx’y’ y/2 _ x/2
k1 = 5 ¥y X2 | kpy = o y/2 —X? —2x'y! (120c,d)
and the axial stiffness matrices
(T, —m V3| —y? Xy T —mV,V\[1 0
ktl = T x/y/ _x,z ) kt2 = — % 0 ) s (1206, f)
and one can express that
Vpp 2621‘[3 VIZ;PS” al'p > l',P !
o (T) 02\ 57 Jou| miVi s ) (121a)
2Vep azl‘P VFPS./ orp .
', _ Y 121b
s K s’ >6a ot s ) Qo g ( )
B 0 /(Y
Y/ s\ 0 (Y x’
(T, — B;cz)s—’j - B<S73>a(s—’,’> = Ty — knX', (121d)
Y > (1p)
<Ta 7) —m;V; (7> = —k;x" — kpx. (121e)

By substituting Eqs. (36) and (121) into Eq. (106) together with some manipulation, the nonlinear dynamic, large
amplitude vibration model in the Cartesian system is obtained as

mX + cx + gX' + (kpxX")" + (kpox") + knx” + Kkpx' =1, (122)

where the total mass matrix is

|11 0

m = s'(mp +m; + C,) 0 1}, (123a)
the hydrodynamic damping matrix is

c=ys Cj"" C"jj"y , (123b)

Cepry Cegy

and the external load vector is

f— f:\‘ g CZ))C VIQ-IA + 2CZ),\‘yl Vi VHl + CZ)XyZ V[%ly + C7\/1 VHX —m Vixl/sl (1230)

Iy C;y Vl%ly + 2CZ)xy2 Vi Viy + CZ)xyl V12~lx + C;kl/l VHl — Wq — m; I./iy,/sl .

In Eq. (122), the effect of large axial strain and the Poisson’s ratio effect contribute in all the coefficient matrices,
especially to the terms of the combined tension 7, — m; VI-2 and the tension gradient 7), — m; V; V] in the axial stiffness
matrices. It is also evident that the effect of transported fluid is

to add the inertial force of transported mass into the total mass matrix,

to provide the negative damping force in the gyroscopic matrix,

to reduce the internal tension and axial stiffness of the system in the axial stiffness matrices,
to provide an excitation term in the external load vector.
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5.2. Large amplitude vibration models in the natural system

Introducing the bending coefficients in the natural system

B 2B 3B/[s" B B/s

by = b2n=ST*ST;(?), b3n=ST3*ST3(?), (124a—c)
B' 3B /s B /" 3B/s' 2

ban =G5~ TS(?) - ;3(;) *?3(?) ’ (1240)

one can express that

Bx) 10 o

0-0 - —a—(B—) = b0 + by (0, (125)

Bx)7'
0 = {%} = b1a(8'0") + bon(5'0") + ban(s'0), (126)

where the expressions for s and 6 can be determined from the geometric relations
§'sin(0 — 0,) = i, +v,0,, 5 cos(0 —06,) = s, + V], — w0, (127a,b)

/ o
un + bngo

2 / . n/\2 J / /N2 _
§7 =, +va0,) + (s, + v, —u,0,)", tan(0 —0,) = m

(127¢, d)

By substituting Eqgs. (34), (58a), (60), (125), and (126) into Eq. (101) together with some manipulation, the large
amplitude vibration model in the natural system is obtained as

iy ity 50 50" 5o’ S0 0
m B + ¢y b + n § + kbln S,@,B,, + kb2n 5'/0/2 + ktln 0 + kt2n g = fm (128)

where the hydrodynamic damping matrix is

C:qn 0
c, =5 . s (129a)
0 C('q[
the gyroscopic matrix is
=m;V; 20 (129b)
gn - ml 1 0 ] 2
the bending stiffness matrices are
K b0 k bu 0 (129¢, d)
n = 5 n = B C,
! 0 7b1n ” 0 7b3n
the axial stiffness matrices are
_ (Ta —mVH]| 1 0O _ (To—miViVI\ [0 0
ki, = |:b4n 4 0 ol ko, = 4 o 1’ (129, f)

and the external load vector is

f, = fn = . C;)n Vlzfn j_ CL I./Hn + W, sin 0 . . (129g)
fi Cp, Vi, + Coy Vi — wa cos 0 — m;V;

It is evident that in the natural coordinate system there is no coupling term in all the coefficient matrices. Note that
for the lower order analysis, the following approximations by two-term binomial expansion may be used in Eq. (128):

s sl + v, —u,0), 00, + W, + v,0.)/s, (130a, b)

§Sxtl — w0, SO~ + 0,0, 0 ~s)0, 4+l + 20,0, (130c—e)

n-o’
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5/9// zs;e// + u/// + 1.7”9/ s/e/// zs:)e/// + u/l// + U///e/ (130f, g)

n-o’ n o’

S0 x5 07 + 200, $00"~500! +u'0. (130h,1)

0~ 0 n 0

5.3. First-order models for large amplitude vibrations

Once Egs. (36) and (56) are substituted into Egs. (97) and (98), the second-order model of large amplitude vibrations
of the pipe is established. To reduce the second-order system to the first-order system, the velocity expressions following
Egs. (131a)—~(131c) are introduced. By adopting Eqgs. (115)—(117) and (123c), the first-order model can be obtained as

o e (131a)
0y
»_ 131
o Ve (131b)
00
O Vin, (131¢)
Ox = ' sin 6, (132a)
0o
g—i} = s'cos0, (132b)
0 M
WM (1320)
667];4 = s'(Vsin0 — H cos 0), (132d)
aa—H:s’(mp—o—m, ) B Vi2 -V,-sin@cosﬁ%

o

M V 14
(CE,qY Ve, + Cequ Ve, +m; V Fcos 0 + sin 0) — fr (132¢)

oV « 0Vpy
a—s(mp—km,—i-C) .

aVp,
—m;V;si Vi(2 — cos? 0)%

0Vpy
Ou
» M m;V; V
(C Vpy + C: Vpy — m,V —sm0+ " cos 6) -/ (132f)

eqxy eqy

If o = 5 is used, and hydrodynamic effects due to external flow, and unsteady, nonuniform internal flow are excluded,
Eqgs. (132) become

0

a—’s“ = sin0, (133a)

0

a_i = cosf, (133b)

o0 M

w_uM (1330)

oM .

T Vsinf — H cos 0, (133d)
OVpy M

a:(merm, af‘ ViVpy cos@+mi1/,2§cos 0, (133e)

oV oVp, M

3= (mp + m; atp} ViVpg sin0—m,-V,-2§sin0+(mp+m,-)g. (133f)
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Note that
Vpy  Ox _OVpe  Ox . OVp, O
o o Vmeosl=—7r =gy TVesinl=—Z =5
and
ovp, oy M 900y x M . d0ox 0y
=2 Zosh=—Z=-" _nf= —— =2
o0 o2 B T&oes o BO" 0505 08

(134a,b)

(134c,d)

Eqgs. (133) describe the nonlinear dynamics of an onshore pipe steadily conveying fluid (Atanackovic, 1997; Paidoussis,

1998).

6. Nonlinear static equilibrium models

The static equilibrium models are derived by eliminating the time-dependent terms in the nonlinear dynamic
equations. As a result, all parameters at the displaced state contained in the nonlinear dynamic equations will alter to

the parameters at the equilibrium state for nonlinear static equilibrium models.

6.1. Nonlinear static models in the Cartesian system

Eliminating the time-dependent terms in Eq. (122), and replacing the variables at the displaced state by those at the

equilibrium state, one obtains the static equilibrium model as
(Kp1oX"0)" + (kp2oX"0) + kioX" o + kX, = £,

where the position vector is
X, =1{xo Yo},

the bending stiffness matrices are

B /2 —x'y B
Kpio = 0[ g oo | Ky = o

5 V) 7] 4 2 ” /g
S, =X,V X, S, Yo — X, _2xuyo

V] 12 2
2x0yo Yo =X, :|
bl

and the axial stiffness matrices are

_y;2 x;y; :| k[2 _ (Tzlw — My I/io I/i/o)
PEE 0o =

! 5, !
XoVo X So

_ (Tao — My V,%;)
Kip=—"757—""

/3
S(I

[

1 0
0 1/
and the external load vector is
f — {fw } o { C;xo V12~1x0 + 2C7)>;y10 VHXU VH)’O + Cj)xyZo VI%Iyo }

f:l’f’ ’ C*Dyo V12~1yu + 2C:)x)720 VHXO VH}’D + C:)xyla VI%IXU — Wao
6.2. Nonlinear static models in the natural system
Similarly, eliminating the time-dependent terms in Eq. (128) yields the static model

0" S0 §0 0
kblno{ g 0, 0,, } + kaim{ J 0,2 } + kllno{ 0 } + klZno{ g } = fno,

where the bending stiffness matrices are

Kk _ blna 0 Kk _ b2n0 0
blno — 0 7b1m) 5 b2no — 0 7b3n0 P

in which the bending coefficients are

B, 2B 3B, /[s" B B,/(s"

b —_— o b —_— 0 ° 0 b —_— o o 0
1no 3 2no 3 3 E 3no 3 3 N E

s 855 sBO\s DA AANCA

o

(135)

(136a)

(136b, ¢)

(136d,e)

(136f)

(137)

(138a,b)

(139c—e)
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B! 3B,(s\  B,(s"\  3B,(si\’
bano R (b/) .8/3 (3/) + §3 (7) > (139f)

the axial stiffness matrices are
(Tao — Mjp V,%,) 0 k,z - _ T;w Mio Via V,Io
s, 0 ol s,

ktlno = [b4n0 -

00 (139g,h)
o 1l g

and the external load vector is
Cp V3 4 Waosin 0
fm) _ fVIu _ S/o ?rw glno ao o ) (1391)
Jro ChioVine — Wao €08 0,
6.3. First-order models for nonlinear static equilibriums

Likewise, once the time-dependent terms in Egs. (131) and (132) are eliminated, the system of the first-order
differential equilibrium equations is obtained as

dx, .
o _ 5! sin 6,, (140a)
da
dro =5/ cos 0,, (140b)
da
o, M,
o= (140¢)
M, .
ddoc = s (V,sin0, — H,cos0,) = s,0,, (140d)
HO M 10 10 .
44, = s ( miy V2 —=2cos 0, + u sin0, | — fro» (140¢)
da B, s
!
aazo = (—m,-,, Vi% sin 0, + %{’:’V"’ cos 0 ) — fros (140f)
do, do,
Q = (T4 — My, V2) + /;m, (140g)
da do
dTm, dVi,
do Qo +m10 Viowffto- (140h)

The boundary-value problem of the system of the first-order ordinary differential equations (140) can be solved
directly by numerical integrations. Application of the system of equations (140) to a nonlinear bucking analysis of
extensible flexible marine pipes transporting fluid via the method of adjacent nonlinear equilibrium has been
demonstrated by Chucheepsakul and Monprapussorn (2001).

7. Choices of the independent variable

One salient feature of the large strain formulations presented in this work is that the independent variable « used in
the formulations provides flexibility in the choice of parameters defining elastic curves. The formulations therefore
allow users to select the independent variable that is most efficient for their own problem solution. For example,
analysis of flexible marine pipes as shown in Fig. 1 has at least three alternatives for the independent variable o such as
the vertical coordinate y, the offset distance x, and the arc length s.

The advantage of using o = y is that the total water depth or the boundary condition is known initially, while by
using « = x the boundary condition is known if the offset at the top end of the pipe can be assumed to be static, and is
unknown if the offset is dynamic. If one uses o = s, the boundary condition is always unknown, because the total arc
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length changes after deformation. The problem for which the boundary condition is unknown becomes much more
difficult, and requires specific treatment.

However, the disadvantage of using o = y is that if elastic curves after large displacements form like the U-shape or
the semi-U-shape as shown in Figs. 1(b) and (c), the vertical position is no longer a one-to-one function for all points on
the elastic curves. Consequently, o = y is not an effective choice in this case. Likewise, using « = x encounters the same
difficulty when the elastic curves after large displacements develop akin to the C-shape or the semi-C-shape. In these
troublesome cases, using o = s becomes the best way, because arc length is an intrinsic property, and thus is always a
one-to-one function for all points of the elastic curves.

Therefore for flexible marine pipes which do not face the problem of elastic curves having a U-shape, such as the
high-tensioned pipes as shown in Fig. 1(a), using o = y is sufficient. However, if the pipes confront the problem that
occurs in the case of low-tensioned pipes as shown in Figs. 1(b) and (¢), « = s should be employed. It should be noted
that in addition to the three alternatives of « as exemplified earlier, there are still other choices of « such as the span
length, the rotational angle, and so on, which may be employed if efficient.

8. Extension to other applications

The present formulations are applicable to large strain analysis not only of flexible marine pipes, but also of any kind
of clastica structures listed below.

(a) Onshore pipes: The effect of external fluid would be excluded from the present models.

(b) Submerged pipes: The hydrodynamic pressure effect of external fluid would be excluded.

(c) Marine cables: Bending rigidity and influence of internal fluid would be excluded.

(d) Submerged cables: Bending rigidity, influence of internal fluid, and hydrodynamic pressure effect of external fluid
would be excluded from the present models.

(e) Onshore cables and strings: Bending rigidity, and influences of internal and external fluids would be excluded from
the present models.

(f) Elastic rods, long columns, and long beams: Influences of external and internal fluids would be excluded from the
present models.

Even though the present models are intended for elastica structures with environment-induced initial curvatures, the
models can still be extended to elastica structures with man-made initial curvatures such as curved beams and arches by
considering £#0 in application of the extensible elastica theory presented in this paper.

9. Conclusions

A literature review has shown that the effects of axial deformation, internal flow, and Poisson’s ratio effect can be
significant in the behaviour of flexible marine pipes. To take account of the combined action of these effects in flexible
marine pipe analysis, large strain formulations are needed. The essential mathematical principles for large strain
modelling are developed in this paper. These include original developments of the apparent tension concept, and the
extensible elastica theories from the viewpoints of total Lagrangian, updated Lagrangian, and Eulerian mechanics.
Based on large strain elasticity and the apparent tension concept, it is shown that the Poisson’s ratio effect influences the
characteristics of internal flow, and induces the apparent tension rather than the effective tension. Therefore, the
apparent tension should be used in large strain analysis for general Poisson’s ratios.

Based on the proposed mathematical principles, the large strain formulations are developed by the virtual work
method and the vectorial method in both Cartesian and natural coordinates. The virtual work method produces large
strain models in the three weak forms of integral equations, and one strong form of differential equations, while the
vectorial method yields the identical strong form. All the four forms of the models can be used for large strain analysis
of the pipe, however, with different aspects of model solutions as summarized in Table 1. Relying upon the strong form,
one can create large strain models of large amplitude vibrations and nonlinear static equilibrium of pipes. The
advantages of the present models relate to the flexibility offered in choice of the independent variable, and the
possibility of applying them to numerous elastica problems, including even some biomechanics applications such as
veins conveying fluids inside the human body, and vessels rising water in the xylem of a plant.
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Table 1
Alternatives of large strain modeling of flexible marine pipes
Large strain Governing equations Constraint of Solution methods
models by natural BCs
Equations Type
Weak form 1 (82)—(85) None
Weak form 2 (86), (87), (89), (90) Integral equations Some Limited to assumed
mode methods
Weak form 3 91), (92), (94), (95) All
Strong form (97)-(100), or (101), (106), or Differential All Unlimited
(115)—(119) equations
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Appendix A. Derivation of extensible elastica theory

Consider Fig. 2(b). Displacements and deformations of the pipe element from the undeformed state (state 1) to the
equilibrium state (state 2), and then to the displaced state (state 3) result in changes of

axial strain at the neutral axis ¢—¢, —> ¢,
bending moment M — M, — M,

radius of curvature F—r, —r,
differential arc length ds—ds, —ds,
differential rotation angle d0— d6, —d0.

Rotations of cross-section from state 1 to 2, from state 2 to 3, and from state 1 to 3 are denoted by dg, = df, — do,
de, = d0 — do,, and de = dO — d0, respectively.

In order to describe these changes, the three deformation descriptors previously defined in Section 2.1 are employed.
Consequently, the extensible elastica theory can be developed by the total Lagrangian, the updated Lagrangian, and the
Eulerian formulations as follows.

A.1. Total Lagrangian formulation
The total Lagrangian formulation considers total changes from state 1 to 3 by neglecting the intermediate state 2. All

changes are measured relative to the original state 1. The theoretical development starts by expressing the undeformed
and deformed arc lengths of the fibre at any radius ¢ as

ds. = (F +¢) d0, (A.1a)
ds. = (r + ¢)(de + dO) = rd0 + ¢(dg + d0). (A.1b)
Since df = d5/F and d = ds/r = (1 + ¢) d5/r, Egs. (A.1) may be written in the form
ds. = (1 + E) ds = (1 + cR) ds, (A.2a)
r
ds d
ds;:(l—i-s)d&—i-g(d(p—i-?g):(l—i-s—i-gd—g:—i-;l%) ds, (A.2b)

where © = 1/F and k = 1/r are the curvatures at the undeformed and the displaced states, and

de dods do _
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From Definition 4, the TL-strain of the fibre at any radius ¢ is defined by
. ds; —ds,  (e+c(de/ds)ds e+ gx(l +¢) —&]

; ds. (1+4¢r)ds 1 +c¢r

(A.4)

The stress corresponding to the TL-strain o. = Eé. is referred to as the Kirchhoff stress. The axial force and the bending
moment due to the Kirchhoff stress can be expressed as

. (1 +8) — ] -
N=| 6.dip—E / {M} dp, (A.50)
Ar i 1 +¢r
~ 2 S _
M= | c.cdip :E/ et +e) =/ 5 (A.5b)
Jip Jip 1 +¢r

in which E is the elastic modulus and Ap is the undeformed cross-sectional area of a pipe.
If the following geometrical properties of the cross-section

s d4 . cdA . czdA4
AP:/ . Qp:/ - IP:/_s ! (A.6a—c)

i, 1 +cf i, 1+cf a, 1 +cr

are defined, Egs. (A.5) may be rewritten in the form
N = Edpe + EQp[(1 + &) —&], M = EQpe+ EL[(1 + &) — &]. (A.7a,b)

The TL-strain energy due to the TL-strain ¢ is measured with respect to the undeformed volume of the pipe Vp.
Therefore, its expression is given by

vo [ ZEg, - [ Sav A8
_ L vy = /v = v, (A8)
Taking the first variation of Eq. (A.8), one obtains
SU = / Ee 06, dVp = / / Pt Ul | S (A9)
W s Jap 1 +¢r

For elastica problems, ¢k = ¢/F<1, thus 1/(1 + ¢k)~ 1. Consequently, Eqs. (A.6) yield 4~ Ap, 05 ~0, and I, ~Ip.
Substituting these conditions in Egs. (A.4), (A.7), and (A.9), the constitutive equations of the extensible elastica theory
can be obtained as

TL-axial strain:

e =¢e+g[r(l + &) — K], (A.10)
TL-axial force:

N = EApe, (A.11)
TL-bending moment:

M = EIp[k(1 + &) — 7], (A.12)

TL-strain energy:
oU = /{N58 + Mo[k(1 +¢) — g]} d5 = /[N(Ss’ + MO — 0] da (A.13)
5 o

Note that

de = 5(ds _ d§> =05/5, Ox(1+¢) —r]= ()(% — d_(7) =350 — 0))5.

ds ds ds
A.2. Updated Lagrangian formulation

The updated Lagrangian formulation considers the two-step changes from state 1 to 2, and then from state 2 to 3. All
changes are measured relative to the intermediate state 2. The development starts by expressing the three state arc
lengths of the fibre at any ¢ as

ds. = (F+¢)d0 = 7dd + ¢(d, — do,), (A.14a)
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ds, = (r, + ) db,, (A.14b)
ds; = (r + c)(dey + d0,) = rd0 + c(de, + db,). (A.14c)
Since df = d5/F = (1 — &,) ds, /7, d0, = ds,/r,, and d0 = ds/r = (1 + &4) ds, /r, Eqs. (A.14) may be written in the form
ds. = (1 —¢,)ds, + ;(? — dgoo) = (1 — & +CKy — ¢ i‘f") ds,, (A.15a)
dso; = (1 + ri) ds, = (14 ¢xp) dso, (A.15b)

ds, do,
ds; =(1+eg)ds, +¢|ldo;+— | = | 1 +eq+ S R ds,, (A.15¢)

i To So

where £ = 1/F, k, = 1/r,, and k = 1/r are the curvatures at the three states, and
dp, db, do ds

&, s, dsds, e F=) (A.162)
dp, d0ds do, _

ds, dsds, ds, k(1 + &4) — Ko, (A.16b)
do _do, n doy _ k(1 + eq) — /(1 — &,). (A169)
ds, ds, ds,

From Definition 4, the UL-strain of the fibre at any radius ¢ is defined by

ds. — ds. [Ed + ¢ + ¢(do,/ds, + dgo,,/dsu)] ds, e+g[r(l +ey) — (1 —g,)]
g = — = = = . (A.17)
: ds,. (14 ¢x,) ds, 1+ ¢k,
The stress corresponding to the UL-strain is referred to as the updated Kirchhoff stress. The axial force and the bending
moment due to the updated Kirchhoff stress can be expressed as

4 c[ie(1 + 6g) — (1 — &,
N= a;dApng/ r*’["( téa) = KU =& )]} d4p, (A.18)
Apo Apo 1+ ¢x,
o+ (1 + 20) — /(1 — ¢,
M= | c.cddp, :E/ r* + el +ea) — /U~ )]} d4p, (A.18b)
Apo Apo 1+ ¢,

in which Ap, is the deformed cross-sectional area of the pipe at the equilibrium state.
If the following geometrical properties of the cross-section

* dAp,, * / ¢ dAPg * / Qz dAP,,
AL — , - I, = . A.19a—c
po /Apu 1+ ¢, QPO Ap, 1 +¢xK, po Ap, 1+ ¢k, ( )
are defined, Egs. (A.18) may be rewritten in the form
N = EApe + EQp,[K(1 + £4) — R(1 — &,)], (A.20a)
M = EQp e+ El k(1 + &4) — &(1 — &,)]. (A.20b)

The UL-strain energy due to the UL-strain & is measured based on the deformed volume at the equilibrium state of
the pipe Vp,. Thus, it can be expressed as

0. &
U :/ == dVp, =/ —=dVp,. (A.21)
Vp, 2 Vp, 2
Taking the first variation of Eq. (A.21), one obtains
; 1 +e4) — /(1 —¢,
SU = / Ee.66. dVp, — / / . [5” SOl + ) = RA =} 4y (A.22)
Vpo ) So J Apo 1+ ¢,

For elastica problems, ¢x, = ¢/r, <1, so 1/(1 + ¢k,)~ 1. Consequently, Egs. (A.19) produce A;ozApo, Q;‘,UzO, and
I;n ~ Ip,. Using these conditions in Egs. (A.17), (A.20), and (A.22), the constitutive equations of the extensible elastica
theory can be obtained as
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UL-axial strain:

e =&+ grk(l + eq) — ’R(1 — &), (A.23)
UL-axial force:
N = EAp,e, (A.24)

UL-bending moment:
M = Elp,[r(1 + &4) — =(1 — &,)], (A.25)

UL-strain energy:

SU = /{N58+M5[K(1 +2a) = (1 — &)1} ds,

= /[Nés’ + MO — 0] do. (A.26)
Note that
. ds —ds s d Y (] e _ di(-),di(; _ NS
e = 5( s, > =0os'/s), Ok(l+es)—r(l—¢g)]= 5(dso dso> =00 —-0)/s,.

A.3. Eulerian Formulation

The Eulerian formulation considers total changes from state 1 to 3 by neglecting the intermediate state 2. All changes
are measured relative to the final state 3. The development starts by expressing the undeformed and deformed arc
lengths of the fibre at any radius ¢ as

ds; = (F+¢) d0 = 7df + ¢(d0 — do), (A.27a)

ds. = (r+¢) do. (A.27b)
Since df = (1 — &) ds/F and d0 = ds/r, Eq. (A.27) may be written in the form

ds. =(1 —s)ds—i-g(g—d(p) = (1 —8+g1<—il—f> ds, (A.28a)

ds. = (1 +¢K)ds, (A.28b)

where £ = 1/F and x = 1/r are the curvatures at the undeformed and the displaced states, and
dp d6 dOds
ds  ds dsds
From Definition 4, the EL-strain of the fibre at any radius ¢ is defined by
o ds. — ds; _ (e +¢(dep/ds)) ds _ &t ¢l — /(1 — &)]
B ds; (1 +c¢K)ds 1 +c¢k ’

K —i(1 —g). (A.29)

(A.30)

The stress corresponding to the EL-strain is referred to as the Cauchy stress. The axial force and bending moment due
to the Cauchy stress can be expressed as

chie — 7(1 —
N=[ o.ddp— E/ {M} dAp, (A31a)
Ap Ap I +cK
- 2 — 17(1 —
M= | ccddp=E / [F'* el = & 8)]} dAp, (A31b)
Ap Ap 1 +¢K

in which Ap is the deformed cross-sectional area of the pipe at the displaced state.
If the following geometrical properties of the cross-section

. ddp
Ay = , A32a
L /AP 1 +cx ( )

* ¢ dAp
- , A32b
0= [ ;7% (A320)
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c2d4
L= >—2£ A.32c
" /A S (A32¢)
are defined, Eqgs. (A.31) may be rewritten in the form
N = EApe + EQplx — (1 — )], (A.33a)
M = EQpe + El [k — &(1 — &)]. (A.33b)

The EL-strain energy due to the EL-strain ¢ is measured with respect to the deformed volume at the displaced state
of the pipe Vp. Thus, its expression is given by

[ &
U:/ - Ede:/ —=dVp. (A.34)
Jv, 2 vp 2
Taking the first variation of Eq. (A.34), one obtains
0¢ + ¢o[k — /(1 —
oU = / Ee.06. dVp = / / a{ et cole = RU= o 44, g, (A.35)
Voo s JAp 1 +¢x

For elastica problems, ¢x = ¢/r<1, thus 1/(1 +¢x)~1. As a result, Eqgs. (A.32) yield Ap~Ap, Qp~0, and I, ~Ip.
Substituting these conditions in Egs. (A.30), (A.33), and (A.35), the constitutive equations of the extensible elastica
theory are obtained as

EL-axial strain:

& = e+ [k —R(1 —¢)], (A.36)
EL-axial force:

N = EApe, (A.37)
EL-bending moment:

M = Elp[x — (1 — ¢)], (A.38)
EL-strain energy:

oU = /{N&s + Mok — R(1 —¢)]} ds = /[Nés/ + M0 — 0] do. (A.39)

Note that
Coofds—=dy\ o, _ _d0d9_~,-,,
(387(3( o )Nés/s, o[k — ’(1 —8)]75<a—a)~5(9 -0/
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